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ABSTRACT
Molecular clouds are observed to be turbulent, but the origin of this turbulence is not well under-

stood. As a result, there are two different approaches to simulating molecular clouds, one in which
the turbulence is allowed to decay after it is initialized, and one in which it is driven. We use the
adaptive mesh refinement (AMR) code, Orion, to perform high-resolution simulations of molecular
cloud cores and protostars in environments with both driven and decaying turbulence. We include
self-gravity, use a barotropic equation of state, and represent regions exceeding the maximum grid
resolution with sink particles. We analyze the properties of bound cores such as size, shape, linewidth,
and rotational energy, and we find reasonable agreement with observation. At high resolution, the
different rates of core accretion in the two cases have a significant effect on protostellar system devel-
opment. Clumps forming in a decaying turbulence environment produce high-multiplicity protostellar
systems with Toomre-Q unstable disks that exhibit characteristics of the competitive accretion model
for star formation. In contrast, cores forming in the context of continuously driven turbulence and
virial equilibrium form smaller protostellar systems with fewer low-mass members. Our simulations
of driven and decaying turbulence show some statistically significant differences, particularly in the
production of brown dwarfs and core rotation, but the uncertainties are large enough that we are not
able to conclude whether observations favor one or the other.
Subject headings: ISM: clouds – stars:formation – methods: numerical – hydrodynamics – turbulence

1. INTRODUCTION

Contemporary star formation occurs exclusively in
dense molecular clouds (MCs). Such regions exhibit large
non-thermal line widths generally attributed to super-
sonic turbulence (Larson 1981). Although debate contin-
ues on the origin and characteristics of this turbulence,
it is now recognized that turbulence is a necessary el-
ement of star formation and plays an important role in
the shape of the core initial mass function (IMF), the life-
times of molecular clouds, and the star formation rate.

Simulations have shown that supersonic turbulence de-
cays with an e-folding time of approximately one cloud
crossing time if there is no energy input to sustain it
(Stone et al. 1998; Elmegreen & Scalo 2004; Mac Low &
Klessen 2004). If turbulence decays as quickly in molec-
ular clouds then star formation must happen rapidly as
the cloud looses turbulent pressure support and under-
goes global collapse. In this senario, star formation oc-
curs on a dynamical timescale and MCs must be transient
dynamic structures (Elmegreen 2000; Hartmann 2001).
If however, turbulence is fed from large scales or pro-
tostellar winds, expanding HII regions, and other pro-
cesses provide sufficient energy injection to balance dis-
sipation produced by shocks, then MCs may arrive at
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a quasi-equilibrium state (e.g., Tan, Krumholz & Mc-
Kee 2006). Although there are many possible sources
for turbulent energy, the dominant source and the spe-
cific characteristics of turbulence remain poorly under-
stood. Recent effort has been directed at this issue and
some observations of low-mass star forming regions, e.g.
L1551, find evidence for ongoing turbulence injection
in the form of winds and jets, which maintains rough
virial balance over several cloud dynamical times (Swift
& Welch 2007). While turbulent support is maintained,
only a small number of overdense regions will become
gravitationally unstable and form stars in a dynamical
time, leading to a low star formation rate and allowing
MCs to live for several dynamical times.

The two different views of cloud dynamics are related
to, but distinct from, the two major approaches to sim-
ulating turbulent molecular clouds. The fact that there
are two competing approaches to the simulation of such
clouds is a direct reflection of our lack of understanding
of the origin of the turbulence in these clouds (McKee &
Ostriker 2007). In one method, the turbulence is initial-
ized and then allowed to decay (e.g. Klessen et al. 1998;
Bonnell et al. 2003; Bate et al. 2002; Tilley & Pudritz
2004). The primary problem with this approach is that
the turbulence decays to levels that are much lower than
those observed. Advocates of this method argue that
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the gravitational collapse that ensues after the decay of
the turbulence can be observationally confused with tur-
bulence (e.g. Vazquez-Semadeni et al. 2006), but it is
difficult to see how to maintain a low star formation effi-
ciency if much of the gas is in a state of gravitational col-
lapse. The other approach to cloud simulation is to drive
the turbulence so that it does not decay (e.g. Padoan &
Nordlund 1999; Gammie et al. 2003; Li et al. 2004;
Jappsen et al. 2005). This approach allows one to study
the processes that occur at a given level of turbulence,
which can be set to match that in a given cloud, but
it suffers from the disadvantage that the driving is un-
physical. This approach is a good match for the case of
quasi-equilibrium clouds, and it can be made consistent
with the case of transient clouds if it is assumed that the
simulation box represents only a small part of the molec-
ular cloud, so that the decay time for the turbulence is
long compared to the dynamical time of the simulation.

The near universal shape of the stellar IMF across di-
verse star forming environments has sparked much de-
bate and generated diverse theories. Padoan & Nordlund
(2004) suggest that the functional form of the IMF can be
derived from the power spectrum and probability density
function characteristic of supersonic turbulence. Larson
(2005) proposes that the peak of the IMF is set by the
Bonnor-Ebert mass at the minimum cloud temperature,
which is related to the dust-gas coupling and gas cooling
efficiency. In the competitive accretion model, Bonnell et
al. (2004) invoke high stellar densities at the centers of
clusters to propose that the relative position of the stars
in the gas reservoir determines their mass. According
to this model, the IMF is determined by mass segrega-
tion, such that low-mass stars form in the lower density
gas at the edges of the cluster and higher mass stars
form in the centers, where their masses can be further
increased by the coalescence of smaller protostars. In
addressing the origin of the IMF, numerical simulations
have been largely inconclusive in discriminating between
models given that a wide range of conditions (virial pa-
rameters, resolution, code algorithms, included physics)
have all succeeded in reproducing the IMF shape.

A large amount of computational effort has been di-
rected towards studying self-gravitating turbulent clouds
both with and without magnetic fields (e.g. Klessen
2001; Bonnell et al. 2003; Li et al. 2004). A number of
simulations succeed in reproducing various observed core
properties such as the IMF and Larson’s laws (Padoan
& Nordlund 1999; Gammie et al. 2003; Tilley & Pudritz
2004; Li et al. 2004; Jappsen et al. 2005; Bate & Bonnell
2005). However, most simulations lack the resolution to
span the turbulent inertial range (Klein et al. 2007) to
accurately render the evolution of cores into stars in a
cluster environment.

In this paper, we perform numerical AMR simulations
with our code Orion to investigate the role of driven and
decaying turbulence on low-mass star formation. We fol-
low the evolution of star forming cores in a turbulent
box to show that turbulent feedback is correlated with
the multiplicity of stellar systems, the shape of the IMF,
and the dominant protostellar accretion model. In §2,
we discuss the methodology of Orion and the initial con-
ditions. In §3, we analyze core properties in driven and
decaying turbulence at low resolution. In §4, we present
results from a few high resolution studies of the proto-

stellar core evolution inside selected cores formed in the
context of driven and decaying turbulence. Finally, §5
contains conclusions. In a companion paper (Offner et
al. 2008, hereafter Paper II) we investigate the effects of
driven and undriven turbulence on the properties of the
cores from which the stars form.

2. CALCULATIONS

2.1. Numerical Methods
Our simulations are performed using the parallel adap-

tive mesh refinement (AMR) code, Orion, which uses a
conservative second order Godunov scheme to solve the
equations of compressible gas dynamics (Truelove et al.
1998; Klein 1999). Orion solves the Poisson equation us-
ing multi-level elliptic solvers with multi-grid iteration.
Throughout our calculations, we use the Truelove crite-
rion to determine the addition of new AMR grids (Tru-
elove et al. 1997),

ρ < ρJ =
J2πc2s
G(∆xl)2

, (1)

where ∆xl is the cell size on level, l, and we adopt a
Jeans number of J = 0.25. We insert sink particles in
regions of the flow that have exceeded this density on the
maximum level (Krumholz et al. 2004). Sink particles
serve as numerical markers of collapsing regions and also,
after sufficient mass accretion and lifetime, protostellar
objects. We impose a merger criterion that combines sink
particles that approach within two grid cells of one an-
other but prohibits nearby objects from merging if both
have masses exceeding 0.1 M�. This limit divides stars
from substellar objects such as brown dwarfs and has the
effect of tracking all significantly massive objects. Parti-
cles that represent temporary violations of the Jeans con-
dition and have little bound mass tend to accrete little
and ultimately merge with their more substantial neigh-
bors. The combination of sink particles and AMR with
the Jeans criterion allows us to accurately and efficiently
continue our calculation to high resolution without the
time constraints imposed by a large base grid size and
without the consequences of artificial fragmentation.

2.2. Initial Conditions and Simulation Parameters
Isothermal self-gravitating gas is scale free, so we give

the key cloud properties as a function of fiducial val-
ues for the mean number density of hydrogen nuclei, n̄H,
and gas temperature, T . We chose a characteristic 3-D
turbulent Mach number, M=8.4, such that the cloud is
approximately virialized:

αvir =
5σ2

GM/R
∼ 1.67. (2)

It is then easy to scale the simulation results to the as-
trophysical region of interest. For the adopted values of
the virial parameter and Mach number, the box length,
mass, and 1-D velocity dispersion are given by

L= 2.9 T1
1/2n̄

−1/2
H,3 pc , (3)

M = 865 T1
3/2n̄

−1/2
H,3 M� , (4)

σ1D = 0.9 T1
1/2 km s−1 , (5)

tff = 1.37 n̄−1/2
H,3 Myr , (6)
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where n̄H, 3 = n̄H/(103 cm−3) and T1 = T/(10 K) and
where we have also listed the free-fall time for the gas in
the box for completeness. For n̄H, 3 ∼ T1 ∼ 1, the simu-
lation approximately satisfies the observed linewidth-size
relation (Solomon et al. 1987; Heyer & Brunt 2004). For
the remainder of this paper, all results will be given as-
suming the fiducial scaling values n̄H = 1100 cm−3 and
T=10 K, which are appropriate for the Perseus Molecu-
lar Cloud (Paper II), but they may be adjusted to differ-
ent conditions using equations (2)-(5). In terms of the
Bonnor-Ebert mass,

MBE =
1.182c3

(G3ρ̄)1/2
= 4.71

T
3/2
1

n̄
1/2
H, 3

M�, (7)

the simulation has a mass of 184MBE. If the Jeans
mass is defined as MJ = ρL3

J , where LJ = (πc2s/Gρ̄)1/2

is the Jeans length, then MJ = (π3/2/1.18)MBE =
18.9T 3/2

1 /n̄
1/2
H, 3 M�.

Our turbulent periodic box study is comprised of two
stages. The first stage simulates the large scale isother-
mal environment of a turbulent molecular cloud with
self-gravity. In this “low resolution” stage, we only add
enough AMR levels to resolve the shape and structure
of collapsing clumps and cores. This first stage has two
parts. First, to obtain the initial turbulent spectrum,
we turn off self-gravity and use the method described
in MacLow (1999), in which velocity perturbations are
applied to an initially constant density field. These per-
turbations correspond to a Gaussian random field with
flat power spectrum in the range 3 ≤ k ≤ 4 where k is
the wavenumber normalized to kphysL/2π. At the end of
two cloud crossing times, the turbulence follows a Burg-
ers P (k) ∝ k−2 power spectrum as expected for hydro-
dynamic systems of supersonic shocks. For the second
part, we turn on gravity and follow the subsequent grav-
itational collapse for two scenarios. It should be noted
that some workers (e.g. Bate et al. 2003) do not allow
self-consistent turbulent density fluctuations to build up
before turning on gravity. Any choice of initialization
for a turbulent, self-gravitating cloud is necessarily ap-
proximate, but in our view it is preferable to have self-
consistent density and velocity fluctuations in the ini-
tial conditions. In the simulation that we will refer to
with the letter D (driven), we continue turbulent driving
to maintain virial equilibrium, while in the other, noted
with U (undriven), we halt the energy injection and allow
the turbulence to decay.

In the second stage, we select a few emerging cores
for further study in each turbulent box, and we follow
their fragmentation and evolution into protostellar sys-
tems at high resolution using a barotropic equation of
state (EOS). We add additional grid refinement to the re-
gions we select, which continue to evolve within the low
resolution context of the box. This method capitalizes
on the AMR methodology to achieve a high resolution
study of the development and properties of protostellar
cores with realistic initial and boundary conditions. Fol-
lowing all the cores over a free-fall time with AMR rather
than a subset to the maximum resolution would require
more than a million CPU hours on 1.5 GHz processors.
In contrast, our stage two approach with AMR requires
∼50,000 CPU hours per high resolution box.

In the first stage, it is reasonable to assume that the
low density gas in the cluster is isothermal and scale-
free, reflecting the efficient radiative cooling of the gas.
However, as the gas compresses and becomes optically
thicker there is a critical density at which the radiation
is trapped. Ideally, we would directly solve for the ra-
diation transfer using an appropriate opacity model to
accurately determine the gas temperature at these high
densities. However, even approximations such as the Ed-
dington and diffusion approximations do not sufficiently
economize the equations of radiation transfer such that
they are affordable over the resolution and timescales
necessary for this calculation. Consequently, we adopt
a bartotropic equation of state to emulate the effect of
radiation transfer. The gas pressure is given by

P = ρc2s +
(
ρ

ρc

)γ
ρcc

2
s , (8)

where cs = (kBT/µ)1/2 is the sound speed, γ = 5/3, the
average molecular weight µ = 2.33mH, and the stiffening
density ρc is given by ρc/ρ0 = 2.8× 108. The value of µ
reflects an assumed gas composition of nHe = 0.1nH. The
value of the stiffening density determines the transition
from isothermal to adiabatic regimes. It introduces a
characteristic scale into the previously scale-free isother-
mal conditions. The isothermal scaling relations above
remain valid as long as the ratio of stiffening density to
the average box density is presumed to be constant. We
chose a value of the stiffening density, ρc = 2 × 10−13 g
cm−3, to agree with the ρ(T ) relation calculated by Ma-
sunaga et al. (1999), who perform a full angle-dependent
radiation hydrodynamic simulation of a spherically sym-
metric collapsing cloud core. Unfortunately, we sacrifice
some accuracy in using the barotropic approximation in
lieu of radiative transfer, since an EOS assumes that gas
temperature is a single valued function of density. Simu-
lations have shown that gas temperature in calculations
using radiation transfer vs. a barotropic EOS can differ
by a factor of several and potentially produce different
fragmentation (Boss et al. 2000; Whitehouse & Bate
2006).

The low resolution initial stage uses a 1283 base grid
with 4 levels of factors of 2 in grid refinement, giving
an effective resolution of 20483. The high resolution core
study has 9 levels of refinement for an effective resolution
of 65, 5363 such that the smallest cell size corresponds to
∼10 AU for our fiducial values.

3. BOUND CLUMP PROPERTIES IN THE
LOW-RESOLUTION TURBULENT BOX

3.1. Clump Definition

At the end of a free-fall time, tff = (3π/32Gρ0)1/2,
with gravity we analyze the core properties and compare
the driven and decaying turbulent results. At this time,
the large scale driven turbulent simulation has 32 sink
particles with 14.2% of the total mass accreted. The de-
caying turbulence simulation has 20 sink particles con-
taining 13.6% of the mass. Because the sink particles
mark collapsing cores rather than individual protostars
at this stage, these percentages should be viewed as an
upper limit to the actual star formation rate. Nonethe-
less, these numbers are not too much larger than the the
prediction of a 7% star formation rate per free fall time
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given by Krumholz & McKee (2005) for our assumed
conditions and neglecting outflows. In the undriven sim-
ulation, the turbulence decays significantly in 1tff and
no new sink particles are formed after ∼ 0.75tff . With-
out continued driving, there is insufficient energy to cre-
ate the large scale compressions responsible for seeding
new cores. After significant turbulent support is lost,
the cloud deviates from virial equilibrium and the gas
falls onto existing over-densities rather than forming new
cores.

In presenting the results from the low resolution sim-
ulations, we restrict ourselves to the analysis of ob-
jects that can best be described as “star-forming bound
clumps” (see McKee & Ostriker 2007), which are gener-
ally gravitationally bound but may form several systems
of stars. In the following sections, we will adopt the ter-
minology “core” to refer to the bound condensations out
of which a single protostar (i.e. sink particle) or small
multiplicity protostellar system forms. Hence, we do not
apply a Clumpfind algorithm, as described by Williams
et al. (1994), which also captures unbound and tran-
sient over-densities. Instead, we define a bound core as a
sink particle with envelope satisfying four criteria. First,
the density in the included cells must exceed the average
shock compressions, i.e., ρ ≥ ρ0 · M1D

2, which also en-
sure a single peak for each core. Second, the total mass
in the core must be greater than the local Bonner-Ebert
mass, signifying that the core will collapse. Each cell,
i, forming a core must also be individually gravitation-
ally bound to it such that |EiKE| < |EiPE|. Finally, the
cells included must lie inside a virial radius, R, such that
αvir ≤ 2, where the 1-D velocity dispersion, σ, is given by
the sum of the turbulent and thermal components of the
gas velocity: σ2 = σ2

NT + c2s . We vary the density cutoff
by a factor of two and find that changes in the data fits
remain within 1-sigma error. Thus, our results are not
overly sensitive to our core definition. The larger of these
cores may eventually form a cluster of stars and may best
be described as star-forming clumps. The smaller cores
will likely form only a single protostellar system. At the
low resolution stage of analysis it is difficult to predict
the outcome, and so the line between higher mass star-
forming clumps and lower mass cores is ill-defined.

Note that in our methodology, the presence of a sink
particle does not guarantee the eventual formation of a
protostar, only that the Jeans condition has been ex-
ceeded at some time during the simulation. In each sim-
ulation, there are a few sink particles that do not posses
envelopes satisfying these criteria. However, all cores in-
cluded in our analysis are defined to be gravitationally
bound, collapsing objects rather than transient overden-
sities in the flow and hence are predisposed to develop
protostellar systems.

3.2. Clump Properties
There are a number of core physical properties that

are comparable to observations, and we investigate these
here at 1 tff . Figures 1 - 5 show the bound core data
plotted with best fit lines. We exclude objects from the
fit that have R =

√
ab ≤ 4∆x, where a and b are the

lengths of the major and minor axes.

3.2.1. Density Profiles

Fig. 1.— The figure shows the log of the core masses as a function

of log size (R =
√
ab) for the driven (left) and decaying (right)

boxes at 1 tff . The slopes have fits of 1.03±0.26 and 1.27±0.19,
respectively.

Fig. 2.— The figure shows the core aspect ratios for the driven
(left) and decaying (right) boxes at 1 tff . The median aspect ra-
tios for each case are (b/a, c/a) = (0.76, 0.40) and (b/a, c/a) =
(0.73,0.54), respectively.

Fig. 3.— The figure shows the log core velocity dispersions as

a function of log size (R =
√
ab) for the driven (left) and decay-

ing (right) boxes at 1 tff . The slopes have fits of 0.54±0.25 and
0.19±0.11, respectively.
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Fig. 4.— The figure shows the rotational parameter, β, as a

function of size (R =
√
ab) for the driven (left) and decaying (right)

boxes at 1 tff . The crosses give the 2-D projected value, while the
diamonds give the 3-D value. For run D, the median β values are
0.05 (crosses) and 0.05 (diamonds). For run U, the median β values
are 0.08 (crosses), 0.19 (diamonds).

As plotted in Figure 1, we find that compared to cores
in run U, the cores in run D have a slightly flatter trend of
M(R) ∝ R, consistent with Bonnor-Ebert spheres, which
are characterized by ρ(r) ∝ r−2.0. In run U, the cores
have profiles that are closer to a free-fall profile, where
ρ(r) ∝ r−1.5. Cores that are supported or collapsing
slowly will tend to resemble pressure-confined isother-
mal spheres (Kirk et al 2005, Di Francesco et al. 2007)
as in run D, where turbulence is providing more exter-
nal pressure support. In run U, where the turbulence
has decreased significantly, cores tend quickly to infall
and collapse as unbound gas becomes gravitationally at-
tracted to the largest overdensities. However, the slopes
of the cores in the two simulations are within 1-sigma er-
ror due to significant scatter, so that the trends are not
significantly different.

3.2.2. Shape
As shown in Figure 2, both distributions of bound cores

have similar morphologies and tend to be mainly tri-
axial. It is thought that in the presence of magnetic
fields, which we do not include, cores will flatten along
the field lines (Basu & Ciolek 2004). However, ideal
MHD simulations by Li et al. (2004) also find that their
cores are mostly prolate and triaxial1. In any event, the
difficulty of deprojecting observed cores makes the true
shape distribution ambiguous. Run D has median ma-
jor and minor aspect ratios of b/a =0.76 and c/a=0.40,
while the decaying cores have median aspect ratios of
b/a=0.73 and c/a=0.54. The net medians of the shape
distributions 0.58 (D) and 0.52 (U) are similar to those
observed for different star-forming regions which fall in
the range 0.50-0.67 (Jijina et al. 1999).

3.2.3. Velocity Dispersion
In Figure 3, we plot the velocity dispersion as a func-

tion of core size for comparison against Larson’s (1981)

1 Li et al. 2004 and other references use the word “core” to refer
to their bound over-densities. For consistency, we continue to use
our own definition of cores and cores (see § 3.1).

linewidth-size relation. For low-mass star forming re-
gions, σNT ∝ R0.5 with some sensitivity to core sizes and
clustering (Jijina et al. 1999). We find exponents of 0.54
(D) and 0.19 (U). The slope of run D is within the range
of observed slopes for low-mass regions. Although the
scatter in our data appears large, our χ2 fit slope error
is comparable to the range of fit errors (±0.1 − ±0.19)
that Jijina et al. report. Plume et al (2000) observed
massive cores with a completely flat slope, and indeed,
the cores in run U are more massive with a mean mass
of 12 M�versus 8 M�for the driven, but not significantly
so (see §3.2.6). A Kolmogorov-Smirnov (KS) test of the
distributions of velocity dispersions indicates definitively
that the populations are quite dissimilar at the >> 99%
level. The difference in slope between the two simula-
tions is possibly due to crowding in the decaying tur-
bulent case caused by insufficient global turbulent sup-
port against gravitational attraction. Jijina et al. (1999)
showed that clustered objects have a significantly flatter
linewidth-size relation slope. Note, that the magnitudes
of the velocity dispersions in run U, although flatter, are
higher, which is consistent with quickly collapsing rather
than turbulently supported cores.

3.2.4. Rotation
Typically, rotational energy makes up only a small

fraction of the core gravitational energy. The rotational
parameter β is defined as the ratio of the rotational ki-
netic energy to the gravitational potential energy. For a
uniform density sphere this can be written:

βrot =
1
3

Ω2R3

GM
(9)

Observationally, Ωpos = Ω2
x + Ω2

y is the angular ve-
locity projected in the plane of the sky, such that
βrot,obs = 2

3βrot. Goodman et al. (1993), studying
a selection of dense cores in NH3, find that βrot,obs is
roughly constant as a function of size and find values of
2 × 10−3 < βrot,obs < 1.4 with median βrot ∼ 0.02. Ob-
servations of dense cores using N2H+, which primarily
traces n > 105cm−3, quiescent gas gives similar median
value of βrot,obs ∼ 0.01 (Caselli et al. 2002). For the pur-
pose of comparison, we evaluate βrot in two ways. First,
we follow the convention of the observers and evaluate
βrot,obs by assuming that the cores are projected con-
stant density spheres. Second we sum over all the 3-D
data to calculate Erot/Egrav. For a singular isothermal
sphere, Erot/Egrav = 1

3βrot.
Figure 4 confirms that βrot for both runs is indepen-

dent of the core size, and there is fairly large scatter.
The total range of βrot values for observation and sim-
ulation is roughly the same. We find a range of 0.0005
< βrot,obs < 0.2 for the driven case and 0.006 < βrot,obs <
0.3 for the decaying case. However, overall our values are
a factor of 2 to 4 higher than those found by Goodman
et al. Run D has a lower median βrot,obs ∼ 0.05, while
run U has very few low βrot,obs cores and so has a me-
dian βrot,obs ∼ 0.08. When we use the complete gas
properties to calculate Erot/Egrav, we find median val-
ues of 0.05 and 0.19 for the D and U cores, respectively.
Jappsen & Klessen (2005) perform gravoturbulent driven
simulations of cores and find a median Erot/Egrav ∼ 0.05,
in agreement with our result. The higher βrot,obs values
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Fig. 5.— The figure shows the log of the core specific angular

momentum as a function of log size (R =
√
ab) for the driven

(left) and decaying (right) boxes at 1 tff . The crosses give the 2D
projected value, while the diamonds give the 3D value. For run
D, the slopes have fits of 1.91±0.65 (diamond), 1.14±0.31 (cross).
For run U, the slopes have fits of 1.14±0.35 (diamond), 1.50±0.23
(cross).

measured in the cores in the undriven simulation may be
a side effect of the smaller turbulent support: Since the
U cores are moving more slowly, they may more easily
accrete gas from farther away, which has higher angular
momentum. (We thank the referee for this comment.)
Although a KS test verifies that the two βrot,obs popula-
tions are distinct, neither is a good match for observation
since both have median values that are higher than ob-
served.

One possible explanation for the factor of 3-5 differ-
ence between simulation and observation is that mag-
netic fields play a significant role in decreasing core rota-
tion. A number of recent simulations of isolated rotating
magnetized cloud cores have shown that magnetic brak-
ing is an efficient means of outward angular momentum
transport (Hosking & Whitworth 2004; Machida et al.
2004; Machida et al. 2006; Bannerjee & Pudriz 2006).
The oblate cores formed in the ideal MHD simulation of
Li et al. (2004) show a median βrot,3D similar to ours
(Li, private communication), however, all their cores are
supercritical by an order of magnitude.

Another possibility to account for the difference in me-
dian β is that observers typically investigate isolated
cores, which are easier to distinguish and analyze but
tend to be less turbulent. However, our study specifically
concerns bound cores forming in a turbulent cluster. Us-
ing Larson’s laws, βrot ∝ v2

rot/(GM/R) ∝ R/(GM/R) ∝
1/Σ 'const. However, there is large scatter and a few
exceptions of clouds with non-constant column density,
Σ, such that measurements of βrot could be sensitive to
differences in column density in various MCs.

3.2.5. Angular Momentum
There is also a substantial difference between the spe-

cific angular momentum in the two cases as illustrated
in Figure 5. We plot both the 3D total specific angular
momentum of the cores, which is obtained by directly
summing the angular momentum of the individual cells
comprising a clump, and the 2D specific angular momen-
tum, by totaling the projected momentum along a line

of sight. In run D, the specific angular momentum fits,
j2D(R) ∝ R1.1 and j3D(R) ∝ R1.9, bracket the expected
j(R) ∝ R1.5 based upon the linewidth δv ∝ R1/2 and
assumption of virial balance (Goodman et al. 1993; this
argument suggests the same value for both the 2D and
3D cases). The specific angular momentum fits in run
U are more similar but still a little flat, j2D(R) ∝ R1.5

and j3D(R) ∝ R1.1. Because the decaying cores are less
turbulent, they will be inclined to have less variation of
angular momentum than their driven counterparts. The
cores in run D overshoot the expected relationship for
j3D, while the decaying cores undershoot by a similar
amount. In either case, we expect that the simulated
angular is affected by the absence of braking effects from
magnetic fields, which we do not include in these sim-
ulations. Nonetheless, we find that the measured range
of j ∼ 1021 − 1022 cm2 s−1 to be consistent with ob-
servational estimates and the 2D angular momentum es-
timates to be statistically similar to one another, but
flatter than the measured j2D ∝ R1.6±0.2 (Goodman et
al. 1993; see Fig. 5).

3.2.6. Core Mass Function
Measurements of the core mass function (CMF) show

that its shape strongly resembles the stellar initial mass
function (IMF) (Lada et al. 2006). The high mass end,
in particular, seems to share a similar power law index.
As a key characteristic of star formation, the core and
star mass functions for driven and undriven turbulence
has been extensively numerically studied. Ballesteros-
Paredes et al. (2006) and Padoan et al. (2007) find a
mass function of the form dN/dlog(m) ∝ m−1.3 for cores
in driven hydrodynamic turbulence, even without the
presence of self-gravity. Klessen (2001) finds that both
driven turbulence with 1 ≤ k ≤ 2 and undriven turbu-
lence produce a core spectrum with a similar slope to that
of the measured IMF. A number of isothermal SPH sim-
ulations of decaying turbulence have shown agreement
with the observed IMF despite different initial turbu-
lent conditions in which a turbulent velocity spectrum is
initialized on a constant density field and then allowed
to decay in the presence of self-gravity (e.g. Klessen &
Burkert 2001; Bate el al. 2002; Bonnell et al. 2003; Tilley
& Pudritz 2004; Bonnell et al. 2006). In this method,
the turbulence does not reach a steady state and the
simulated cloud is not virialized as observed.

For the purpose of comparison, we plot the CMF for
the simulations D and U at 1 tff in Figure 6. The two
runs produce 30 and 19 bound cores, respectively. Un-
fortunately, the statistics at the high mass end are too
small to be able to rule out either distribution on the ba-
sis of agreement with the Salpeter slope. Although the
agreement looks better for the driven cores, we find that
the mass distributions are in fact statistically similar ac-
cording to a KS test.

Overall, the simulations have statistically different dis-
tributions of angular momentum, rotational parameter,
and velocity dispersion. The decline of turbulent com-
pressions in the undriven run appears to make some sig-
nificant changes and causing fewer new condensations to
be formed. As turbulent pressure support is lost, the
contracting gas instead falls onto existing cores resulting
in less turbulent, more quickly rotating cores than in the
driven case. However, it is not possible at this time to
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Fig. 6.— The figure shows the sink (dashed line) and core (solid
line) mass distributions for the driven (left) and decaying (right)
runs at 1 tff . The straight time has a slope of -1.3.

say which approach corresponds more closely with obser-
vation.

4. PROTOSTELLAR CORES AT HIGH RESOLUTION

4.1. Overview
In this section, we present our computational results

for the evolution of the protostellar systems contained
in a few selected cores using 5 or 6 additional levels of
refinement. We accomplish our study by inserting a re-
finement box around the core of interest before a sink
particle is introduced on level 4 so that cells inside the
box continue to higher densities and refine according to
the Jeans criterion, while cells in the remainder of the
simulation refine only to a maximum level of 4 as be-
fore. The lengths of the high resolution boxes are typ-
ically 0.25-0.5 pc depending on the size of the enclosed
clump. As a result, the boxes contain a region ∼200-2000
times volumetrically smaller than the simulation domain.
The total initial mass in the boxes ranges from 4-12 M�,
which easily encompasses the bound core and all collaps-
ing regions associated with it. In this way, we can per-
form a high resolution study of selected collapsing cores
with realistic initial conditions and consistent boundary
conditions taken from the surrounding lower resolution
grids computationally cheaply and efficiently. In each
portion of the box, sink particles are introduced when
the corresponding maximum refinement level is reached.
At high resolution, each sink particle represents a single
“protostellar core.” Thus, we are able to follow the clump
fragmentation at high resolution, without the need to re-
run the entire calculation at that resolution.

We chose six cores for further study. In cases U1a
and U1b, we test for convergence by following the same
cores at two different resolutions. In cases D2 and U2,
we choose an early collapsing object that is present in
both the driven and decaying simulations to highlight
the differences between the calculations. The cores U1,
D2, and U2 have initial bound masses greater than 2.5
M�. We also study two smaller driven and undriven
cores, D3 and U3. As a result, we observe the effect of
turbulent support on protostellar system development.
The physical properties of the selected cores are given in
Table 1. Table 2 gives the three dimensionless quantities
relating to the box surrounding each core: M, αvir, and

the self-gravity parameter,

µ ≡ M

c3s/(G3/2ρ̄1/2)
, (10)

where αvir can then be written as

αvir =
5
6

(
M2

µ2/3

)
. (11)

These three parameters characterize the amount of
turbulence in the core vicinity, the degree of self-
gravitization of the gas, and the extent to which balance
is achieved between the two. Table 2 indicates that all
the small boxes are subsonic and thus the influence of
gravity is dominating the gas in the regions around the
cores.

Note that when we cease driving in run U, the turbu-
lent cascade continues and the turbulent decay rate is
determined by the Mach number and the domain size as
described by Mac Low (1999). At any given time, the
effect of the decay on the cores forming in the high reso-
lution subdomain depends upon the amount of turbulent
decay in the large box. The 1-D velocity dispersion in
Table 1 is an indicator of the change in turbulent energy
when the core of interest is collapsing.

4.2. Convergence Study
Before embarking on further analysis, it is important

to show that the results at the calculation resolution are
suitably converged. In particular, it is necessary to show
not only that there is no artificial fragmentation but that
the number of fragments is constant with increasing res-
olution. For our convergence study we consider a box in
the decaying turbulence run, U1, which encloses a long
filament that collapses to form a number of small over-
dense fragments along its length. We run this calculation
with 9 (U1b) and 10 (U1a) levels of refinement, which
corresponds to a minimum cell size of ∼10 and 5 AU,
respectively. Figures 7, 8 and 9 show the two simula-
tions at 16 kyr, 23 kyr, and 53 kyr, respectively, after
the formation of the first sink particle. Tables 3 and 4
give the sink particle masses and the fragment masses at
these times. We define the fragments as discrete cores of
bound gas with density greater than 2× 10−16 g cm−3.

We find that both resolutions produce the same num-
ber of collapsing fragments and yield a similar collection
of sink particles. Most of the fragment masses for the
two resolutions differ by at most a few percent, while
sink particle masses may differ by 50%. At a particular
instant in time, discrepancies between the number of sink
particles in the two runs can occur due to several factors.
First, the addition of extra levels allows the higher res-
olution simulation to collapse for a longer time without
exceeding the Jeans criterion. Thus, a sink particle ul-
timately forms in both cases at the same location but
at slightly different times. Another possibility is that a
sink particle forms in both simulations at similar loca-
tions, but in one it mergers with a larger neighbor. A
final possibility is that the region that collapses in the
higher resolution becomes thermally supported before a
sink is formed. In all these cases the gas physics can
be quite similar but the introduction of sink particle can
differ due to small details. For example, at 3 kyr the low
resolution simulation has formed sink particles in each
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TABLE 1
Low resolution core properties for each case when the sink particle has 0.1 M�.

U1a/U1b D2 U2 D3 U3

Core Mass (M�) 10.71 5.05 4.32 1.59 2.80
Lmax (pc) 0.45 0.23 0.19 0.03 0.08
Shape 1:0.28:0.05 1: 0.37:0.09 1:0.66:0.26 1:0.69:0.60 1:0.78:0.24
vrms (km/s) 0.42 0.32 0.36 0.33 0.45
nave(105cm−3) 1.44 1.08 1.01 4.06 1.25
αvir 1.5 1.12 1.90 1.06 2.24
βrot 0.052 0.025 0.011 0.028 0.047
tff(104yr) 8.9 10.3 10.7 5.3 5.9
M1D

a 2.4 4.9 3.9 4.9 3.0

a m1D is the velocity dispersion of the entire box, which is fixed at 4.9 for the driven cases.

TABLE 2
Turbulent box properties for the whole domain and the

small boxes containing the cores.

D/U at t=0 U1a/U1b D2 U2 D3 U3

M3D 8.37 0.71 0.80 0.72 0.38 0.74
µbox 206.82 19.03 10.74 12.41 2.6 4.59
αvir 1.67 0.06 0.11 0.08 0.06 0.16

Note. — The values for the small boxes are determined using
the length Lsmall=0.25 pc.

filamentary fragment with condensation masses ranging
from 1.5 × 10−2 − 8 × 10−2M� (see Table 4), while the
higher resolution run has not reached sufficient density
for any sink particles to form. This rather odd filamen-
tary structure is created and confined by the ram pres-
sure of intersecting shocks. As a result it forms somewhat
smaller bound clouds than the minimum Bonnor-Ebert
mass associated with the local pressure (P ' 3× 106 dy
cm−2) at ρ ' 10−14 g cm−3. The smallest sink particles
formed in the filament later merge as shown in Figure
8 when the gas in the filament streams onto the disk-
protostar system.

At later times and for small masses the corresponding
sink particle properties differ the most significantly, par-
ticularly at the lower mass end as shown in Table 3. Due
to the intrinsically chaotic and dynamically unstable na-
ture of three or more body systems, at later times the
evolution of the two calculations begins to diverge. This
is unsurprising because not only do the calculations have
different AMR grid structures, but the particle members
of the system are introduced at slightly different times
and initial masses. Despite this, the masses and config-
uration still show reasonable agreement at 80 kyr.

4.3. Influence of Turbulence on Stellar Properties
Interstellar turbulence undoubtedly has a substantial

effect on cloud lifetimes and core creation, however, its
relationship with core fragmentation and evolution is less
certain. The level of turbulence in cores is partially de-
pendent on how much mass and energy the envelope ex-
changes with the surrounding turbulent gas. In turn,
the properties of the parent core influence the rate of
protostellar core formation and accretion. If substantial
mass continues to fall onto the clump, as in the case of
global contraction, then external flow patterns will im-
pinge upon on the system development, increasing the
accretion rate and possibly causing fragmentation. If

TABLE 3
Masses of the stars in M� for decaying simulations at two

different resolutions at two different times after the
formation of the first sink particle.

∆ t 23 kyr 53 kyr
Resolution 5 AU 10 AU 5 AU 10 AU

0.834 0.705 1.224 0.925
0.000 0.216 0.000 0.369
0.264 0.262 0.571 0.455
0.171 0.175 0.762 0.768
0.000 0.036 0.106 0.141
· · · · · · 0.061 0.036
· · · · · · 0.128 0.180

Note. — The subscripts 10 (U1a) and 9 (U1b) represent the
number of AMR levels. The sink particle absence in the second
row of the high resolution column is due to an early merger (m ¡
0.1M� with the neighbor listed in the first row.

Fig. 7.— The figure shows the log column density of a core in
the decaying turbulence simulation U1b (left) and U1a (right) with
resolution of 10 AU and 5 AU 16 kyr after the formation of the
first sink particle.

however, the core accretes at a relatively low level in the
manner of Bondi-Hoyle accretion in a turbulent medium
then the core will accrete much less over time (Krumholz
et al. 2006; Krumholz et al. 2005). Protostars forming
in such a core limit to the Bondi-Hoyle accretion rate as
the high density gas is depleted.

In cases D2 and D3 we continue turbulent driving to
maintain virial equilibrium.

To avoid directly adding artificial perturbations that
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Fig. 8.— The figure shows the log column density of a core in
the decaying turbulence simulation U1b (left) and U1a (right) 23
kyr after the formation of the first sink particle.

Fig. 9.— The figure shows the log column density of a core in
the decaying turbulence simulation U1b (left) and U1a (right) 53
kyr after the formation of the first sink particle.

TABLE 4
Core gas mass (M�) including embedded sinks for the
decaying simulations at two different resolutions at

three different times.

∆ t 16 kyr 23 kyr 53 kyr
Resolution 5 AU 10 AU 5 AU 10 AU 5 AU 10 AU

0.741 0.758 0.997 0.997 1.907 1.905
0.124 0.124 0.280 0.283 0.827 0.806
0.077 0.077 0.177 0.180 0.136 0.191
0.040 0.037 · · · · · · · · · · · ·
0.035 0.033 · · · · · · · · · · · ·
0.291 0.259 · · · · · · · · · · · ·
· · · · · · · · · · · · 0.106 0.036

Note. — The subscripts 10 (U1a) and 9 (U1b) represent the
number of AMR levels. The minimum density of the gas is ρ =
2×10−16 g cm−3. The ’...’ represent cores that have merged with
others and cannot be individually distinguished.

TABLE 5
Masses of the protostars in both driven and decaying

simulations at 260 kyr (the larger cores, D2 and U2) and
130 kyr (the smaller cores, D3 and U3).

D2 (M�) U2 (M�) D3 (M�) U3(M�)

1.221 1.811 0.639 0.586
1.047 1.002 0.453 x 0.552
1.049 0.933 · · · 0.348
0.490 x 0.223 · · · x 0.114

x 0.382 x 0.131 · · · 0.048
0.329 0.059 · · · x 0.047
0.281 x 0.034 · · · · · ·
0.207 x 0.030 · · · · · ·
· · · x 0.023 · · · · · · a

Note. — The x’s represent particles that are ejected from the
system by dynamical interactions. The time of first sink particle
formation after the onset of gravity for each of the cores is 270,
680, 250, and 660 kyr for D2, D3, U2, and U3, respectively.
aOne additional BD mass sink particles have been excluded as

numerical disk fragmentation from column U2.

may affect the core development or seed new fragmenta-
tion, we do not apply any velocity perturbations to the
high resolution regions inside the refinement box. Thus,
the turbulence cascades into the highly-refined box from
the outside in a self-consistent manner. In cases U2 and
U3, the simulation continues without any turbulent in-
jection.

We find striking differences in the protostellar systems
formed in the driven and decaying cores. The most obvi-
ous difference between the D and U runs is the difference
in the number and mass of sink particles formed (Table
5). For example, initially the fragmentation of D2 and
U2 is similar temporally and spatially, but U2 eventually
forms a slightly larger number of objects particularly at
small masses as the level of turbulence in the two sim-
ulations diverges. The small D3 core forms a small sta-
ble binary system at early times, whereas U3, which is
also fairly small, fragments into a number of protostellar
members.

Despite the small-number statistics, we are able to
compare the IMF of the protostars to the observed initial
mass function via the KS test. The KS test determines
the probability that a given data set is drawn from a
specified statistical distribution, in this case, the single
star IMF given by Chabrier (2005). This test is accurate
for input sets of 4 or more data points. We achieve a
best fit by scaling the masses by an adjustable normal-
ization, ε = m∗/msink, where msink is the mass of the
sink particle. Given that this simulation lacks feedback
effects such as outflows and radiation transfer, the sink
particle masses represent an upper limit and the scaling
factor corresponds to an efficiency factor of ε=0.25-0.75
(Matzner & McKee 2000).

Figure 10 shows the scaled cumulative distribution
function (cdf) for the runs D2, U2, and U3, and the cdf
of the Chabrier is overlaid for comparison. Although all
three runs can have a high confidence level of agreement
with the measured IMF, the normalization values and
the shapes of the distributions are quite different. For
example, the smaller stellar population of D2 has fewer
low-mass objects and hence has a smaller efficiency scal-
ing factor of ∼ 0.4 with highest likelihood of being drawn
from the IMF of 67%. Conversely, U2+U3 distribution
contains collections of low-mass objects and intermediate
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Fig. 10.— The figure shows the cumulative distribution function
(solid line) at t=0.26Myr for D2 (left), U2+U3 (right),where the
dotted line is the Chabrier 2005 IMF fit. The dashed vertical line
represents the point of largest disagreement. The probability that
the data are drawn from the Chabrier IMF is 67% and 59%, re-
spectively, where the efficiency scale factors of the simulations are
0.4 and 1.0, respectively.

mass objects, where the largest disagreement occurs in
the middle of the two populations. A scaling factor of 1.0
gives the best agreement of 59%. A scaling factor near
unity implies that protostellar mass loss has a negligi-
ble effect on the final mass of the star, contrary to some
theoretical expectations (Shu et al 1987; Nakano et al.
1995; Matzner & McKee 2000). For the D2 distribution,
the largest disagreement occurs at the higher mass end,
indicating that if the protostars continue to accrete mass
and no new protostars are formed, then it is likely that
the high probability of agreement with the IMF will be
maintained while the scale factor shifts to a lower value.
The U2+U3 have a larger scale factor due to the signif-
icant number of low mass objects with accretion halted
by dynamical ejection. These objects will be unlikely
to accrete additional mass and are essentially fixed. For
the undriven runs, the largest disagreement occurs in the
middle of the distribution, indicating a widening differ-
ence between the sub-stellar fixed-mass ejected objects
and those that remain in the gas reservoir and continue
accreting. Further running time will more likely make
the gap wider and agreement worse.

The efficiency scale factor is also dependent upon the
normalization we have chosen. The minimum mass that
we are able to resolve in these simulations is proportional
to the Jeans mass evaluated at the maximum level of
refinement. Because the Jeans mass is inversely related
to the density, normalizing the results to a density higher
than our fiducial value of n = 1100 cm−3 will produce
lower mass objects and shift the IMF peak towards lower
mass. This will also increase the efficiency factor used to
scale the distribution to the universal IMF.

Studying the time evolution of the two simulations
shows the origin of the different stellar populations. In
simulation D2, the initial collapse and core fragmentation
produces three well separated objects that remain fairly
far apart. A few additional objects form, but they do
not suffer large gravitational interactions with the pri-
maries and so remain in the high density regions and
continue accreting. By contrast, in U2 and U3 the lack

of global turbulent support causes mass to fall onto the
early formed protostellar cores resulting in contraction
of the clump. This causes all the protostars to gravitate
towards the core center. As the protostellar proximity
increases, the accretion disks interact and become grav-
itationally unstable (see discussion in § 4.6). Fragmen-
tation ensues. The stellar systems become increasingly
dynamically unstable with the addition of these small
latecomers, which rapidly suffer strong gravitational in-
teractions with the larger protostars and are thrown out
of the high density reservoir of gas. Their small envelopes
are stripped away, thus truncating the accretion process
and effectively fixing their stellar masses (see Figure 11).
This truncation process occurs for approximately half of
the objects formed in the undriven simulations (see dis-
cussion of brown dwarfs in § 4.5)

4.4. Accretion
There are two main accretion paradigms. In both mod-

els, star formation begins with the outside-in formation
of gravitationally bound cores and their inside-out col-
lapse. However, the core accretion model proposes that
the main protostellar accretion phase takes place early
on and continues until the entire core mass is accreted or
expelled (Shu et al 1987; Nakano et al. 1995; Matzner
& McKee 2000), after which accretion becomes negligi-
ble. Thus, the initial core size and subsequent feedback
effects limit the mass of the protostars. In contrast, the
competitive accretion model proposes that stars begin in
a core as wandering, accreting 0.1 M� seeds, whose fi-
nal mass is determined by the protostar’s location in the
clump (Bonnell et al. 1997, 2001). Mass segregation is
a common feature of this model, such that the largest
mass objects inhabit the region of highest gravitational
potential and the smallest objects inhabit the less dense
gas, usually having been ejected from the center by grav-
itational interactions.

In our results, there are two accretion phases. Initially,
there is a transient period of high accretion during which
the initial infalling gas accretes onto the newly formed
sink particle and gas is depleted from the cells inside
the accretion region. This phase is model independent
and occurs while the newly created sink particle region
reaches pressure equilibrium with the surrounding gas.
Generally less than 10% of the accretion occurs during
this time. During the second phase, the accretion rate
approximates the Shu model for core accretion,

Ṁ∗ = c3s/G, (12)
(Shu et al. 1987), although in most cases the accretion
rate is gradually declining. This solution is valid until
the rarefaction wave reaches the core, i.e. when approx-
imately half of the original core mass has been accreted
(McLaughlin & Pudritz 1997; McKee & Tan 2002). After
that, the accretion rate diminishes as the density of the
surrounding gas decreases, but our simulations end be-
fore it is possible to determine if this final stage actually
occurs.

To illustrate the differences between the protostellar
systems, we have plotted the mass as a function of time
for all sink particles, the instantaneous mass accretion
rate for the first two formed objects, the time-averaged
accretion rate, and the total mass in sink particles as
a function of time. The turbulent core accretion and
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Fig. 11.— The figures show the sink particle mass as a function
of time for runs D2, D3, U3, and U2 shown clockwise from top left.
Each particle is represented by a different style line.

Fig. 12.— The figures show the instantaneous sink particle
accretion rate as a function of time for runs D2, D3, U3, and U2
shown clockwise from top left. Only the history of the two first
forming particles is shown.

competitive accretion models describe the evolution of
the stellar population in cases D2 and U2, respectively.
In the former case, objects are mainly formed from core
fragmentation with separations larger than 1000 AU. The
average accretion onto the protostars initially agrees with
the Shu model but, modulo fluctuations, diminishes over
time as the core mass depletes (Figure 12). Meanwhile,
the core envelope accretes according to the Bondi-Hoyle
model of turbulent accretion (Krumholz et al. 2006). For
driven turbulent environments the overall Mach number
will remain sufficiently high such that the core will not
gain a substantial amount of mass during the core dy-
namical time and the main accretion phase of the form-
ing protostars will be limited by this time. However,
in the decaying turbulent case loss of turbulent pressure
support potentially causes significant additional mass to
accrete onto the core, resulting in a more constant proto-
stellar accretion rate (Figure 12, bottom row). However,
the differences in the accretion rates of the most massive
objects are subtle due to the significant fluctuations.

Perturbations to the accretion disks and clumpiness of
the infalling gas cause fairly large variability in the sink

Fig. 13.— The figures show the averaged sink particle accretion
rate for the first two sink particles as a function of time for runs
D2, D3, U3, and U2 shown clockwise from top left. The average is
taken over 10 consecutive timesteps, and the solid flat line indicates
the value of c3s/G.

particle accretion rate as illustrated in Figure 12. How-
ever, we do not observe that most of the mass is deposited
in short intervals by clumpiness in the disk as noted by
Basu et al. (2006), who model 2D axi-symmetric disks
with magnetic fields. The absence of this effect in our
calculations is most likely due to our Cartesian geometry
rather than lack of magnetic fields (Basu, private com-
munication). The r − φ geometry used by Basu et al. is
more suitable for disk treatment and has lower numerical
viscosity, which may suppress small scale clumpiness.

Due to differences in core accretion, the two cases pro-
duce much different stellar populations. In the driven
cases, in which fewer objects form, protostars accrete
more smoothly and do not undergo strong dynamical in-
teractions with their neighbors. However, in the decaying
cases, the strong infall pushes the protostars to the core
center and the large number of nearby objects accret-
ing from the central reservoir of gas causes the smallest
objects to be kicked out of the cluster. This can be ob-
served in Figure 12 (U3) as a precipitous drop off in the
accretion rate for individual objects or as flatlining of
the object mass (Figure 13, bottom row). Differences be-
tween the number of objects are caused by turbulent sup-
port, which prohibits new mass from infalling onto the
clump. High accretion causes fragmentation and drives
forming objects to the gravitational center, where they
dynamically interact. This close proximity results in ob-
ject ejection and destabilization of the accretion disks,
which leads to new fragmentation. The differences in
accretion rate and stellar population between the two
cases suggests that the maintenance of turbulence, pro-
tostellar accretion, and stellar population are intimately
related (Krumholz et al. 2005). In spite of individual
accretion fluctuations, the total accretion of the objects
from the core is dominated by the largest objects, such
that the fraction of the core accreted is relatively smooth
over time as shown by Figure 14.

4.5. Brown Dwarfs
Brown dwarfs (BD) are observed to comprise ∼10-30 %

of all luminous objects in star forming regions (Andersen
et al. 2006; Luhman et al. 2007). For example, in the
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Fig. 14.— The figures show the total mass accreted normalized
to the initial bound core mass as a function of time for runs D2,
D3, U3, and U2 shown clockwise from top left.

Chabrier (2005) IMF, with which we compare, BDs with
masses M∗ ≤ 0.08M� comprise ∼20% of the total num-
ber of objects. Understanding the population, origins,
and connection between planets and hydrogen-burning
stars is essential in formulating a successful theory of
star formation. Observations remain particularly am-
biguous concerning the primary formation mechanism of
BDs, sparking many theories. Of these, proposals for BD
formation by turbulent fragmentation, ejection, or via
disk fragmentation have the most potential for generat-
ing BDs in sufficient numbers (Padoan & Nordlund 2004;
Reipurth & Clarke 2001; Whitworth et al. 2007). Sim-
ulations provide an important vehicle for testing these
theories, and we discuss the BD population of our simu-
lations in this section.

Our driven turbulence simulations D2 and D3 do not
produce any sink particles of final substellar mass, which
are primarily created in our simulations by prematurely
truncated accretion. However, if BDs are formed via
the same mechanism as stars, accrete from a disk, and
produce outflows (Luhman et al. 2007) then the same
efficiency factor will be valid for scaling all the objects in
the simulation. The decaying turbulence simulations U2
and U3, however, produce a much larger initial number
of BDs, 33%. This agrees with the competitive accretion
paradigm: Bate et al. (2002) find that ∼44 % of the
objects that form in their 50M� decaying turbulent cloud
simulation qualify as BDs, which is much higher than the
observed fraction. Their calculation is initialized with
uniform density and an initial turbulent velocity field,
however they do not drive the turbulence, so that the
turbulence never achieves a steady relaxed state. Despite
this difference, their result is in qualitative agreement
with the BD formation mechanism and number fraction
of our decaying turbulence runs.

Ideally, we would like to understand the BD popula-
tion in various star forming regions as a function of their
general properties. The turbulent fragmentation model
predicts an upper limit on the total mass available for
the formation of BDs as a function of the Mach number
and average number density (Padoan & Nordlund 2004).
According to their model, the total gas mass available
to make BDs from turbulent compressions is 0.4% of the
total gas mass or 3.7 M� as a function of our simulation

Mach number and density. If the SFR per free fall time
for the driven and decaying runs is respectively 14.3%
and 13.6% then the total maximum possible mass in BD
due to turbulent fragmentation as a fraction of the actual
mass turned into stars is 2.8% and 2.9%. For compari-
son, the fraction of the actual luminous mass turned into
BDs according to the Chabrier IMF is ∼2%. Our high
resolution protostellar systems have a BD mass fraction
of 0.0% and 3.2% for D2, and U2 + U3, respectively,
using the efficiency factor from Figure 10 and includ-
ing M∗ ≤ 0.08M� in the BD mass total. However, the
turbulent fragmentation model gives only the maximum
fraction of gas that can be converted to BDs by turbulent
compressions and it does not include possible BD forma-
tion in disks (Goodwin & Whitworth, 2007). Fragmenta-
tion of disks and dynamical ejection is responsible for all
of the BDs in the decaying simulation. Thus, comparison
between the decaying turbulence models and turbulent
fragmentation prediction is misleading.

The absence of BDs in the driven runs is reasonable if
BDs actually form via turbulent fragmentation. In such
a process, small low-mass objects form from small low-
mass cores. Since we have not chosen any particularly
small cores for high resolution study, we would not ex-
pect to find many BDs. Thus, scaling to the stellar IMF,
which has a peak at ∼ 0.2 M� requires a small efficiency
factor. The core distribution is set by the low resolution
turbulent initial conditions. The minimum expected core
mass is the Bonnor-Ebert mass evaluated at the maxi-
mum turbulent gas density. According to the turbulent
fragmentation model, this maximum is set by the prob-
ability density function (PDF) of the gas density. The
resolution and Mach number of our simulation yield a
density PDF that falls off at ∼ 1.3 × 10−18 g cm−3 or
MBE ' 0.2M�. The minimum mass estimated from this
density agrees with the minimum sink particle mass at
the end of a free fall time at low resolution. Since this
mass is well above the maximum BD mass, it also ex-
plains the low abundance of low-mass objects at high
resolution in the driven simulation. Moreover, this sug-
gests that the driven high-resolution IMF distribution is
incomplete at the low-mass end such that scaling to the
actual IMF may be optimistic and result in underesti-
mating the core efficiency factor.

One observational measure of the BDs in a region
is given by the ratio of low-mas stars to BDs: R =
N(0.08− 1.0M�)/(N(0.02− 0.08). Measurements of lo-
cal star-forming regions give a range of R ' 2 − 5 (e.g.
Andersen et al. 2006). For the driven and decaying
simulations, respectively, we find R > 7 and R = 3.0,
although these numbers are clearly sensitive to the low-
statistics of our simulations. These ratios are most prop-
erly represent lower limits because we have not included
the effects of radiative transfer, which have been shown to
suppress fragmentation (Krumholz et al. 2007). Over-
all, the driven high-resolution BD mass fraction more
closely agrees with the turbulent fragmentation predic-
tion, whereas the undriven BD mass fraction agrees more
closely with competitive accretion results, which predict
larger BD numbers and mass fractions. Given that BD
formation via disk fragmentation dominates in the un-
driven case, it is unsurprising that these statistics do not
agree well with the turbulent fragmentation model and
are quite different from one another.
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4.6. Disk Stability
Analytically, gravitational disk instability is dictated

by the Toomre Q parameter, which is given by

Q =
csκ

πGΣ
, (13)

where κ is the epicyclic frequency, and Σ is the surface
density. For values of Q . 1, the disk becomes unsta-
ble to gravitational fragmentation. Spiral arms develop
for low Q values and fragmentation ensues when Q ap-
proaches 1 from above. This fragmentation manifests as
a density increase at those locations. The early frag-
mentation in D2 and U2 generally occurs near the disk
perimeters, where it is coldest (e.g. Figure 15). In the
simulations, sources of disk instability are due to a combi-
nation of perturbations from clumpy infalling gas, grav-
itational influence of nearby bodies (i.e. other sink par-
ticles), and from actual collisions between disks. Since
the sink accretion radius is racc = 4∆x, we neglect the
innermost 4 cells in the analysis. We define the disk gas
where ρ ≥ 2 × 10−16 g cm−3, which agrees fairly well
with disk boundaries determined visually. In general, we
find disk radii between 150-300AU and surface densities
of a few g cm−2, values similar to observed properties of
low-mass disks (Andrews & Williams 2006).

The stability of a disk and the onset of gravitational
instability have been shown to be correlated with the
accretion rate of the disk itself (e.g. Bonnell 1994; Whit-
worth et al. 1995; Hennebelle et al. 2004; Matzner &
Levin 2005). Higher disk accretion rates increase the
likelihood of disk instability. This fact agrees with our
observation that more instances of disk fragmentation
occur in simulations U2 and U3, where there is larger in-
fall onto the clump, in contrast to the case D2 where the
disks remain fairly stable. The level of disk instability is
directly visible in the plots of the sink particle accretion
rates (Figure 12); very noisy and irregular accretion cor-
responds to clumping and disturbance of the disk. The
simulations where sinks have many close neighbors show
the highest rates of disk instability and episodic accre-
tion. Note that in Figure 12 of run U4, the ejection of a
companion substantially reduces the accretion rate fluc-
tuations of the remaining protostar.

There has been considerable recent discourse on the
necessary criteria for resolving disks and preventing ar-
tificial fragmentation (Nelson 2006; Klein et al. 2007;
Vorobyov & Basu 2005; Durisen et al. 2007). Since we
do find that our disks fragment, this is a topic of con-
cern. Most recent simulations, including ours, have used
the Jeans condition as defined by Truelove et al. (1997)
or Bate & Burkert (1997) to set the minimum refine-
ment of meshes and particles, respectively, in the disk
under study. However, Nelson (2006) argues that this
criterion is inadequate and inappropriate for cylindrical
disk geometry. Additional possible sources of error in
our calculation may arise from sink particle gravitational
softening, numerical viscosity, and the cartesian nature
of the AMR grid. We address these issues here.

In calculating the gravitational sink particle-particle
and sink particle-gas interactions, we use a constant soft-
ening length 0.5∆xmax, where ∆xmax is the grid spacing
on the maximum level. This is much smaller than both
the disk radius and the size of the accretion region, so
it should have little effect on the behavior of the disk.

Fig. 15.— The figure shows the log column density (g cm−2)
of an accretion disk in run D2 with ll levels of refinement. Two
fragments have formed at the edges of the spiral disk structure.
The solid black lines denote grid boundaries. a

In general, we find that the observed disk fragmentation
occurs as cores forming in the ends of spiral arms, well
away from the center of the disk (see Figure 15).

Nelson (2006) requires two specific criteria for adequate
disk resolution. The first is a Toomre condition,

T ≥ ∆xl

λT
, (14)

where T is the Toomre number, and λT is the neutral
stable wavelength defined by:

λT =
2c2s
QGΣ

(15)

and ∆xl is the cell spacing on level, l. The above criterion
is analogous to the Jeans criterion defined in Truelove et
al.,

J ≥ ∆xl

λJ
. (16)

For our simulations, a disk radius of 200 AU is cov-
ered by 20 or 40 cells, which is fairly marginal resolu-
tion, but we will show it is, in fact, sufficient. We plot
the azimuthally averaged density and Toomre Q param-
eter (equation 13) as a function of radius in Figure 16.
Density enhancements are correlated with low Toomre
Q in each refinement case. We also plot the right hand
sides of equations (14) and (16) as functions of radius in
Figure 17. In all cases, these quantities are under the
fiducial value of 1/4. The over resolution in the central
part is due to the requirement that all cells surrounding
a sink particle be refined to the maximum level in order
to encompass the accretion region.

Figure 15 indicates the borders between AMR grids,
so some disk regions within 200 AU become derefined,
and ∆xl → ∆xl−1. However, these regions still satisfy
the refinement criteria by a good margin.

The second criterion formulated by Nelson applies
specifically to SPH codes. It postulates the necessity
of resolving the disk scale height at the midplane by four
smoothing lengths. Nelson argues that insufficient res-
olution of the vertical structure produces errors in the
force balance, thus favoring artificial fragmentation. If
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we assume a one-to-one conversion between smoothing
lengths and grid cells, we can apply it to our calcula-
tion. Figure 17 shows azimuthally averaged quantities
for an accretion disk for ∼2.5, 5, and 10 AU maximum
resolution. The lowest resolution run fails to adequately
resolve the disk scale height, but we do not see extra
fragmentation. We may not see this effect because Nel-
son formulated and tested his criteria for SPH rather
than grid-based codes. It is also possible that the one-
to-one analog of smoothing length to ∆x is not the cor-
rect conversion. However, most disagreement is in the
inner regions where the artificial viscosity is high, which
suppresses any potential fragmentation. In order to de-
termine the cause of the discrepancy, further exploration
with a full grid high resolution study of disks is necessary.

A careful study of the sink particle accretion in a
disk is given in Krumholz et al. (2004). For a Kep-
lerian disk, Orion agrees well with analytic results ex-
cept for some irregularities when the radius of the disk,
r ∼ rB = GM/c2s , the Bondi radius. However, our sim-
ulations have r << rB during the main accretion phase
and should be unaffected. Also of concern is the magni-
tude of the numerical viscosity, which has the potential
to suppress fragmentation if it is sufficiently high. Using
the definition of α viscosity defined in Krumholz et al.
(2004), we can estimate the magnitude of this viscosity
as a function of disk radius:

α'78
rB

∆x

( r

∆x

)−3.85

(17)

'0.8M1T
−1
10 ∆x2.85

5 r−3.85
150 , (18)

where r150 is the radial distance from the central star in
units of 150 AU, M1 is the stellar mass is units of M�,
∆x5 is the cell size in units of 5 AU, normalized to the
maximum level of refinement, and T10 is the gas tem-
perature in units of 10K. This expression shows fairly
large sensitivity to the cell size and disk radius. Due to
the large α value in the inner region of the disk, artifi-
cial viscosity is likely to significantly influence the disk
properties within the inner 100 AU. Large values of α
could potentially suppress disk fragmentation. Proto-
stellar disks around low-mass protostars, which are fairly
thin and have a low ionization fraction, have been mea-
sured to have viscosities of α ∼ 0.01 (King et. al 2007;
Andrews & Williams 2006).

We find that all disks form exactly two fragments at
the same radial locations where Q ∼ 1. Convergence of
the disk density distribution and number of fragments is
our main concern. The averaged quantities are slightly
different in the three cases, although the general trends
are the same. In the lower resolution case the fragmen-
tation is less pronounced, however two sink particles are
introduced at these locations. It is certainly true that the
fragments are not well resolved at the lowest resolution,
and we are only marginally resolving the disks. Hence
we do not devote much discussion in this paper to disk
properties. Serious study of disks requires much higher
resolution than we adopt in this paper and is best studied
in cylindrical or polar coordinate geometry to minimize
the effects of Cartesian cell imprinting.

Given that observations find stellar systems have typi-
cally 2-3 stars (Goodwin & Kroupa 2005), the large num-
ber of objects produced in the high resolution decaying
simulations seems somewhat anomalous. However, the

Fig. 16.— The figure shows azimuthally averaged disk properties
as a function of log radius (AU) for a disk with ∼ 2.5 AU (top),
5.0 AU (middle) and 10.0 AU (bottom) resolution. The left plots
shows log ρ for the edge on view of the disk. Plots on the right
show log Q vs. log r. The central region corresponding to the sink
particle accretion region is excluded from the plot.

actual initial multiplicity is more difficult to determine
than multiplicity among field stars due to the difficulty
of detecting small obscured objects, some of which may
have separations below the resolvable limit. In addi-
tion, systems with more than two bodies are unstable
and decay through gravitational interactions ultimately
decreasing the multiplicity of stellar systems over time.
We witness this behavior in the decaying turbulence pro-
tostellar systems, which expel low-mass members.

Nonetheless, it is likely that a few of these small frag-
ments are numerical products, resulting from our equa-
tion of state. For example, Boss et al. (2000) and
Krumholz et al. (2006) both find that fragmentation
is sensitive to thermal assumptions and the inclusion of
radiative transfer, since heating tends to enhance disk
stability. Price & Bate (2007) show that magnetic fields
tend to suppress and delay both fragmentation and spiral
disk structure. It is probable that inclusion of radiative
feedback and magnetic fields would suppress some of the
small objects that we find in the undriven runs. However,
the absence of these objects in the driven simulations in-
dicates a striking difference in the accretion rate, system
stability, and fragmentation history with turbulent feed-
back.

5. CONCLUSIONS

In this paper we use turbulent simulations with AMR
to illustrate distinctions between driven and decaying
turbulence. Despite identical initial conditions in the
two simulations, we find significant differences between
the two cases after one free-fall time. Our simulations ne-
glect the effect of magnetic fields, which are poorly obser-
vationally constrained and occupy a place of ambiguous
but potentially large importance (Crutcher 1999). Our
simulations also lack radiation transfer, instead relying
on the barotropic approximation, which may affect the
core fragmentation and protostellar multiplicity in our
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Fig. 17.— The figure shows azimuthally averaged disk properties
as a function of log radius (AU) for a disk with ∼ 2.5 AU (top), 5.0
AU (middle) and 10.0 AU (bottom) resolution. The first column
shows plots of J (dashed line) and T (solid line) vs. log r, where
the horizontal line marks the fiducial value of 0.25. The second
column shows the number of cells in the disk vertical scale height
as a function of log r. The solid line is the required resolution of
the vertical scale height according to the Nelson criteria and the
dashed line is our resolution. The central region corresponding to
the sink particle accretion region is excluded from the plot.

results.
We find that the properties of the cores in driven and

decaying turbulence at low resolution are not sufficiently
different to completely dismiss one turbulent environ-
ment. This is in part due to the large scatter in our
results. For example, we find that the cores in the differ-
ent environments have similar shapes and mass-size rela-
tions. However, we find that cores in the driven simula-
tion have less rotational energy, which is in better agree-
ment with observations (Goodman et al. 1993; Caselli et
al. 2002). The linewidth-size relation of the cores form-
ing in driven turbulence is also closer to the observed re-
lation for low-mass regions (e.g. Jijina & Adams 1999),
while the linewidth-size relation of cores in the decaying
simulation is quite flat. We find that driven turbulence
produces a greater number of cores than decaying turbu-
lence with the potential for new star formation occurring
longer than a single dynamical time. In contrast, the de-
caying simulation stops forming new condensations be-
fore one global free-fall time.

The largest differences between the two cases are ap-
parent at high resolution. We show that our high reso-
lution simulations are converged and that the resolution
is sufficient to capture core fragmentation, despite being
marginal for determining the detailed properties of disks.
We find that the presence or absence of global virial bal-
ance has only a subtle influence on individual accretion

rate of the largest object forming in the core at least
for the first few core free fall times. However, the cores
forming in a decaying turbulence environment show clear
signs of competitive accretion such that a core’s accretion
rate is tied to its dynamical history and and its location
in the clump. This supports the results of Krumholz et
al. (2005) who show that simulations exhibiting com-
petitive accretion do so because of lack of a source of
turbulence.

The loss of turbulent feedback in the decaying run af-
fects the dynamic behavior of the forming protostars,
resulting in significant disk fragmentation, and BD for-
mation by ejection. This leads to overproduction of BDs
in comparison to the observed IMF (e.g. Chabrier 2005).
In contrast, the driven simulations form few BDs, which
can be understood in the context of the turbulent frag-
mentation model for star formation, which predicts BDs
to mainly form from small highly compressed cores. Ob-
servations of low-mass star forming regions do not find
large velocity differences or significant spatial segrega-
tion between BDs and low-mass objects as obtained in
the decaying simulation.

While our simulations of driven and decaying turbu-
lence show some statistically significant differences, par-
ticularly in the production of brown dwarfs and core ro-
tation, the uncertainties are large enough that we are not
able to conclude whether observations favor one or the
other. However, in Paper II we use simulated line profiles
to estimate core velocity dispersions and centroid veloci-
ties, and we find that decaying turbulence leads to highly
supersonic infall onto protostars, which has not been ob-
served. Our results thus give some support to the use
of driven turbulence for modeling regions of star forma-
tion, but a conclusive determination of which approach
is better awaits larger simulations with the inclusion of
magnetic fields, protostellar outflows and thermal feed-
back.
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